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‘l Why are we here?

We conclude...that exterior calculus is here to stay, that it will gradually
replace tensor methods in numerous situations where it is the more
natural tool, that it will find more and more applications because of its
inner simplicity. Physicists are beginning to realize its usefulness,
perhaps it will soon make its way into engineering.

H. Flanders,

A PN NN

There’s generally a time lag of some fifty years between mathematical

theories and their applications...

1950 + 50 = 2000

It’s about time !
@ Sandia
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How different people discretize

4 I
Physics
T /
- ™
Variational ":> Differential
Energy principle Model

i

- reduce the admissible states

=

- apply the same principle _
- find the reduced state that K nthy = L h

fits best the exact system

Direct
System equilibrium

ay

- reduce the system

- apply the same physics

- find the exact state of the
reduced system

Discretization is a model reduction that replaces a physical process by a
parametrized family of algebraic equations.
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What do we want to know?

1. Is the sequence of algebraic equations well-behaved?

- are all problems uniquely and stably (in h) solvable?
- do solutions converge to the exact solutions as h—07?

2. Are physical and discrete models compatible?

- are solutions physically meaningful
- do they mimic, e.g., invariants, symmetries of actual states

3. How to make a compatible & accurate discretization?

- how to choose the variables and where to place them;
- how to avoid spurious solutions.

We revisit earlier discussion with a particular focus on how

- variational compatibility (Arnold)
- geometric compatibility (Nicolaides, Shashkov)

can be used to answer these questions.
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,-/" A sequence of linear systems vs.
a single linear system

Ku=F Kh u,
Ku=0 =u=0 Solvability K,u, =0 =u, =0
LYY o joF |
: i <[ IK;
H“H H H H H Stability H“ H H H H H
Stability of linear systems arising from PDEs cannot HKHHKIH = A

* o(h*)

be assessed by standard condition number:

il =uiSw | (R, (R"[-[.) . =sup i
. — | =)
v ( h .
Fl=s ] 7 - supl
K& = 227 O Il
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Stability of a sequence

1 _ lb suggested b
Klea & k< Kl <% g ag y
H hH =a H h H = glb(K ) H hHH h H = glb(K ) G. Golub
o
glb(K,) = ing Hljb‘l‘hH 1nfsup Y K‘uuH
/
'K tability = d
mfsuP y \ZMT\ =720 = [K,[|K]s afeainldle);)endoér?tnofyh
| VK, u The smallest generalized
minmax 172 2=V singular value of K, must be
("zshvj) (”ZS h”h) ) * bgunded away froI;n zero,
0,(K,.S,) independent of h.
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Variational Methods

Galerkin approximation of operator equations

D(A)C X X Au=f f fERA)CY
Ph \|/ \|/ Qh
D(A)D X, X, OQAu=f f f. €Y, ¢ R(A)

Galerkin theorem

solvability 0,yE R(Q,AP,) Pu—u & Q,y—>y

. + approximation
stability 10, Au, |, = v|u,|, 10, Au-Q,AP,ul| —0

Variational compatibility

\

Unique solvability and quasi-optimal convergence

1
-ty =[Pl + 0, Au -0, AP u],
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National
Laboratories



Computational mathematics and algorithhie——

Variational settings for FEM

Optimization No optimization
meixn%<AV,V> —(f.v) InEan%<Av,v> —(f.v) Xdul,Y
subjectto Bv=0 Ku-uyv)=0Vvey

seek ue X s.t. K(uv)=F(k) VveEY
FEM = variational principle + piecewise polynomial subspaces

seek u, € X, st. XK(u,,v,)=F(@,) Vv €7,

(w=-u,v,)), =0  a(u.v,)+b(p,v,)=(f,)VEV,  K(u-u,v,)=0Vv, €Y,
Vvh cX, b(qh,uh)=0 Vq,EP, Xh Su, 1, Yh

.

Vv

National
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Projection Quasi-projection @ Sandia
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Examples

No Optimization

- Advection-Diffusion-Reaction models
- Navier-Stokes equations

Constrained Optimization

Kelvin principle:
- the solenoidal velocity field that minimizes kinetic energy is irrotational

Dirichlet principle:

- the irrotational velocity field that minimizes kinetic energy is solenoidal

Unconstrained Optimization

- Poisson equation

Sandia
National
Laboratories
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Variational problem

No Optimization

YueX dvey s.t.
K(uyv)y=F@ky) VveEY K (u,v) = CH”HXHVHY

Unique solvability & stability

K (u,v) < au|, |V, continuity
K (u,

p ], YuE X intesup (0
K (u,

sup () =0 YWEY  Inf-sup (ll)

e o]
X

National
Laboratories
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Compatibility

Discrete problem

K (u,v,)=F(v,) Vv, €Y, Ku =F
Variational compatibility

conformity: X, CX; v,CY = continuity

Necessary but insufficient!

Klu,,v
Inf-sup (I) sup L.v,) =Y, |u, Vi, € X,

wen Wl

Klu,,v
Inf-sup (Il)  sup CAT Vv, €7,

wex, [l

1).
bl <ClE| -], s(1+—) infllu=v,].

/yh v, EX,,

Yu €X, JveY s.t.
K(u,,v)= Clu, |, M,

Vu, €X, v, €Y, st
K(uh ’vh) = C||uh||X||vh||X

‘ @ Sandia
National

Laboratories
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Variational problem X=Y=VxS§

Constrained Optimization

Igleiymg(%@vﬂ _(f.v)-(Bv.g) Z=kerB={vE X|Bv=0}
a(uv)+b(py)=(f.v) YveEV
b(q,u)=0 VgeES ‘

Unique solvability & stability

continuity of a and b
a(v,v) >C

b(p.v)

sup e ” _yb||p|| VpeS inf-sup for B

v, YvEZ  coercivity on Z

a

VpeS JIveV st

b(p,v)=7|p|, M,

ol <l <clrl, | i
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Compatibility

Discrete Problem
Au+ B p=F » (Ah BZ)(vh)_(fh)
Bu = 0 B 0 ph O

Variational compatibility

Z, ={vh €S, 1b(v,.q,)=0Vq, € Vh} ¢z

conformity v, Cv; §,CS= continuity
Vp, €S, IvEV st b(p,v)= y||ph||s||v||v

Necessary but insufficient:

dv, €V, s.t b(ph,vh)zy||ph||s||vh||v?

Z, =37

Z,=0: Z,¢Z = av,v,)=C,

Vh”V Vvh & Zh ‘77 @ ﬁgt"igﬁlm

Laboratories
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Variational compatibility

conformity Vv.CV;, §,CS§

coercivity on Z, a(v,.v,)zC|v.[, Vv, E€Z,;

b(ph’vh)

|Vh||v
A\

inf-sup for B, sup =nlpills Vpi €S,

v, €V,

4 A\

Zh = Vph & Sh th € Vh s.t. b(ph,Vh) = y”ph”s”vh“V

—~—

||u — uh”V =C, i?f u —vh||V + C2®(Z,Zh)i£1hf||p —qh”S

sl + NPl = €lf1l,- . .
O e plly < Cinfllu-v, |, + C,infllp - g,

Sandia
National
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Variational problem x-=Y

Unconstrained Optimization

rréi)?%<Av,v> —(f.v) K(uv)=F(v) VYveEX

Unique solvability & stability

K (u,v) = C, [, [v], continuity

K(vy)=C,v[. VvEX  coercivity

Discrete problem

K(”mvh) = F(Vh) Vv, €7, K,u, =F, K(vh,vh) > Ca”vh”i Vv, € X,

Variational compatibility

conformity: X, CX = continuity & coercivity!

|

il <ClFl -l s infle-v], - g

a

Sandia
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A summary of variational settings for FEM

Variational setting
Features Optimization type
Unconstrained constrained None
Unique Contlrfu-lty Con_tl-nmty Continuity
Ivabilit Coercivity Coercivity on Z Inf-sup (1)
solvability Inf-sup for B Inf-sup (Il)
Conformit Conformit Conformit
Variational y . y Y
iy g Coercivity on Z, Inf-sup(l)
compatibility
Inf-sup for B, Inf-sup(ll)
Algebraic Symmetric Symmetric
- .. i .. None
problem type positive definite indefinite

Sandia
National
Laboratories



Computational mathematics and algorithhiie——

., €
4 ‘}/

What does variational compatibility buy you

Sequence stability is equivalent to variational compatibility

viK u . K(uh,vh)
>y < infsup

X

=Y

Vil e

Allows to assert powerful results about the asymptotic behavior

- quasi-optimal error estimates
- unique solvability for any h
- stability of discrete solutions (uniform invertibility )

This answers the 1st question:

1. Is the family of algebraic equations well-behaved?

- are all problems uniquely and stably (in h) solvable?

- do solutions converge to the exact solutions as h — 0? @ Sandia

Laboratories
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V\ //
¢ " What does variational compatibility
say about the other issues?

Not much

Variational compatibility conditions are not constructive!

These conditions are not very helpful in finding the stable spaces
and may be difficult to verify. Creative application of non-trivial
tricks required, e.qg.,

— Fortin’s operator
— Verfurth’s method

— Boland & Nicolaides’s method

Inf-sup fear and loathing still common!

Sandia
National
Laboratories
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“Pure” Direct Discretizations

Algebraic model Reduced system
Kinematic relation Continuity relation Uy Uyp
Pz l p ‘ Pg
u Ug 8 Uqo
8 U6 u7
=
P4 P Ps
5 A
Us Uy Us
U1 2
- =
P+ P P3

p — "pressure”
u— "velocity"
p — "density"
v— "flow"

Sandia
National
Laboratories

Constitutive
equation
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F2d

The Hodge

A possible “physical” interpretation of Hodge:
(Franco’s question)

Conversion of velocity (measured along a line)
into a flow (measured across a surface)

Sandia
National
Laboratories
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Problems with identical reduced systems

Potential Thermal Electro Linear Electrical
flow diffusion statics elasticity network
p Pressure Temperature Potential Displacement Potential
u Velocity Heat flux Electric field Strain Voltage
. Thermal Conductivity Compliance Conductivity
-1
A el conductivity Ohm’s law Hook’s law Ohm’s law
V4 Flow rate Heat flow Current Stress Current
f Fluid Source Heat Source Source Current Applied load Al
current
g N/A Heat battery Battery N/A Battery

Sandia
National
Laboratories
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=

Kinematic Constitutive Continuity

Matrix Form

u+B'p=g u=Av Bu = f

RSHES

D=

A B’
B 0

Note that if we were to build the reduced system, its
behavior will be described exactly by this algebraic
equation!

)

-BA'B'p=f-BA'g

i
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Geometrically compatible discretization:

Geometric compatibility

algebraic equations that describe “actual” physical systems.

Requires to discover structure and invariants of physical systems and then
copy them to a discrete system

- Fields are observed indirectly by measuring global quantities (flux, circulation, etc)
- Physical laws are relationships between global quantities (conservation, equilibrium)

Differential forms provide the tools to encode such relationships

- Integration: an abstraction of the measurement process
- Differentiation: gives rise to local invariants

- Poincare Lemma: expresses local geometric relations
- Stokes Theorem: expresses global relations (differentiation + integration)
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How to achieve geometric compatibility?

Algebraic topology provides the tools to copy the structure

1. System states are differential forms reduced to co-chains

2. Exterior differentiation approximated by the co-boundary operator

3. Dual operators defined using Hodge * operator

Branin (1966), Dodzuik (1976), Hyman & Scovel (1988-92), Mattiussi (1997), Teixeira (2001)

Mimetic and co-volume methods fit this reduction model

- Vector fields represented by their integrals (fluxes or circulations)

- Differential operators defined via Stokes Theorem (coordinate-invariant)

- Primal and dual equations/operators (B and BT) and an inner product (A)

Sandia
National
Laboratories
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'
~ 4
- /" Algebraic Topology Approach
1. System reduction

3 exact sequences: (W, W, W, W,), (C, C,, C,, C;), (C’, C!, C?, C)

d

forms e W——W,_ -
| | < R:W,—C (Roc)=[o
- 6 +1 C
co-chains o Cf——=C"" - DeRham map
) )
. %
ChalnS "'Ck_%ckﬂ'“

Commuting Diagram |

d
Wk - Wk+l

(6Rw,c)=(Rw,dc)= [w = [ dw =(Rdw,c) * R | | R
o ‘ 5

Ck Ck+1

Sandia
National
Laboratories

Fundamental property: ‘Rd =0R

{G,D,C} < 6 approximates d — {grad,curl,div}
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Example

chains dd =0

J | 0 (_- 1 A
» Vs <

Y

M K —2- K —2— 99K =0

Jo (8¢t ¢y ) = (e, de,)

r h -11.000000) (11-1-100000000) (-1 11 -1 -1 1)
0-1010000[ [00000000 1 1-1-1
5 s s 00-110000| [1000-1100-1020 0
N >E >F_9K -10 100000 [001 00O01-10 010
-1000 1000l [0001-100100 0-1
0-1000100 (0100 0-1100-100
000-1000T1
00-1000T10
] 0000-1100 _
co-chains so0o00a01  00=0 Sondi
00000 0-11 @National
0000-1010 Laboratories
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- /‘} Algebraic Topology Approach

2. Inner products and dual operators

Inner product W, xW,

s W, =W, (00),=[org
Q

Inner product C*xC*

7:C* =W, (a,b) =(Za,b) = [Ta n+Tb=a"Mb
Dual operators Commuting Diagram i
(6a.p), =(a,0'p) — G, C', D’ o0 ke
' 7 | | 7
w,—Lw
C'G=D'C’=0 requires d7="70 k ksl

Sandia
National
Laboratories
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Examples

Co-volume Mimetic Whitney

\

—> —> —>
Nicolaides, Hyman, Shashkov, Dodzuik (1976)
Trapp (1992-04) Steinberg (1985-04) Hyman, Scovel (1988)
V. V. V4 cos¢ V., cos¢
1 2 3 3773 2772
hl hl sin2 0y ' sin2 93 sin 2 95 sin2 by
h hJ_ V3 cosgy 14 V3 V] cosg| . (W.. W )
27721 sin2 ¢3 sin2 q)l * sin2 ¢3 sin2 (/)1 gk
h3h;‘ V2 cos¢2 V1 cosqb1 V1 . V2
sin2 0y sin2 # sin2 # sin2 9y

Sandia
National
Laboratories
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o

Co-volume inner product is the unique inner product that is

Properties

v diagonal
v" exact for constant vector fields

= |mportant computational property:
v dual co-volume operators have local stencils

Action of co-volume and mimetic products coincides if

Stencil of D*

tan ¢,

V=tla——
i Hztan¢k

(Trapp, 2004)

Approximation

Trimres (RW) = @ = O(h*)/O(h) ~ (Shashkov, Wheeler, Yotov 2004/ Trapp, 2004)

7

Whitney National

Laboratories

(Rw) —w = O(h) (Dodzuik, 1976) @ Sandia
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Algebraic Topology Framework: Summary

1. Structures:

Wo Wy Wo W3) Forms Geometric compatibility
c, C, C,C,) Chains
0 1 (2 (3 _chai d

(C?, C1, C?, () Co-chains W —Ssw,

2. De Rham map R | ! R CDP1
R:Wkeck Rd = O0'R CkLCkH

3. Interpolation operator
7:C* =W, d7 =15 cf 9, ke

4. Inner product 7| | 7 CDP2
(ab), = (1a,2) M W, — W,

5. Primal and dual operators
{G,C,D} & {G',C",D} () e

Laboratories
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Direct discretization of a div-curl system

Vxu=f InQ
nxu=h onl _ onI” A=n-u
V:u=g InQ
1 C:C'—=C’ Vx—d, C':C*—(C )
uelC —4 | <—ucC
D :C'—=C’ V- —d, D:C*—=C’

Cu=f inC> Cu=f inC'

u=h oncC'/C; ) 0 .
Du=g InC Du=g InC

u=h oncC’/C;

Examples:

Co-volume: Nicolaides et. al. 1992-2004
Finite difference: Yee, 1966
Finite volume: Weiland, 1977 @ Sandia

National
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Direct discretization of a div-grad system

n-u=h onl

pEC’

u=h oncC’/C;

Eliminations

Examples

Mimetic:

Finite volume:

ueC’ D:C*—=(C’
G :C’—=(C

V-au=f inQ
_ onl' h=g
Vop+u=0 InQ
V-—d, D :C'—(C’ ucC'
V—d, G:C°—=C'| |pec’
Du=f inC> Du=f inC?

) . o p=h onC"/C;
Gep+u=0 INnC° Gp+u=0 InC

-DG'¢=f -D'Gp=f
—BA™'B’

Shashkov et. al. 1995-2004
The box integration method: Mock, 1983

Sandia
National
Laboratories
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What does geometric compatibility buy you?

Co-cycles of (W, W, W,, W,) _R, co-cycles of (C?, C!, C?, (P)

dw=0 = 0Rw =0
Discrete Poincare lemma (existence of potentials in contractible domains)

do, =0 = o, =do,, 5" =0 = (" =doc""

Discrete Stokes Theorem

(do, .c.)={(w,,.0c,) (6" ,¢, ) =(c"",dc, )

Discrete “Vector Calculus”
dd =0 00=0— CG=DC=0;C*G*=D*C*=0

Any feature of the continuum system that is implied by differential forms calculus
is inherited by the discrete model

Called mimetic property by Hyman and Scovel (1988)

-— LUUUIGLUIIG
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Solvability: free of charge

Div-curl system: Discrete Helmholtz orthogonality

Cu=0
Du=0

Cu=0

D'y =0 }=>(u,u)cl=0=>u50

= ), =0

Div-grad system: Commuting diagram property

Unique solvability: G @=0=¢=0
Assume: pEC G ¢p=0 but ¢p=0

W, LW3 surjection
CDPI R | | R
5 h

C*——(C’ surjection YpeC Ju, € C’st. @= Du

0= (uw,G*qﬁ) = (Du(p,(p) =(@,p) =0, a contradiction! @ Sandia

Laboratories
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Variational vs. geometric

Variational
O Operator-centric point of view

— Problem = operator equation on function spaces
— Discretization = operator equation + functional approximation

O Stability conditions
U Error estimates

stability conditions not constructive -
do not reveal structure of stable discretizations
Geometric
0 Topology-centric point of view

— Problem = equilibrium relation on manifolds
— Discretization = equilibrium relation + manifold approximation

U Forces physically compatible discretization patterns
U Preserves problem structure



Computational mathematics and algorithhie——

K 4
>

We can benefit from combining both approaches

Variational and geometric

D. Arnold stable mixed spaces designed by association of the
problem with a differential complex

M. Shashkov error analysis of mimetic schemes enabled by

identification with a mixed Galerkin method and a
proper quadrature selection.

| will now examine connections between geometrical and
variational compatibility that validate such collaborations using
Kelvin’s principle as a prototype problem

[yV-vdQ=[yfdQ Vy€ES | 1o
2 2 mmmaxi_ﬂv\ dQ- [@(V-v-f)dQ

[v-w-—@V-wdQ=0 VYweV vev s

. @ Sandia
National
Laboratories
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Early examples

Grid Decomposition Property

veL’ V=W+1Z (v =w" +2’ viey”
V20 geometry <V~zh=
Helmholtz :( | GDP
w'z")=0
(w,z) =0} metric <
W', =c(Iv-v"], +v-v'],)

Theorem
GDP is necessary and sufficient for stable, optimally accurate mixed
discretization of the Kelvin principle.
Fix, Gunzburger, Nicolaides, ICASE Report 78-7, 1977, Num. Math, 1981

Similar GDP exists for the Dirichlet principle i
but is trivial to satisfy! @ Moo

Laboratories
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Early examples

Fortin Lemma

(Vh,SM verify inf-sup condition for the Kelvin principle iff:
[V-(II,v)y,dR2= [V -vy,dQ geometry

II,:V—=V"ie
o, <cll,  metric

Geometric assumption: equivalent to a commuting diagram!

V .
[w,V-(I,v)dQ = [,V vdQ 14 S

» . 1z

T AR

National
Laboratories

Douglas and Roberts, Math. Appl. Comp. 1982 @ Sandia
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Can this be an accident?

We see :

- conditions that combine geometric and metric properties
- the ubiquitous commuting diagram...

The Connection

Bossavit, Nedelec, Verite, 1982-88 and Kotiuga, 1984, were first from the
finite element community to notice and document an uncanny connection
between unusual, i.e., not nodal, finite element spaces and Whitney forms.

Sandia
National
Laboratories
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Elsewhere...

FINITE-DIFFERENCE APPROACH TO THE
HODGE THEORY OF HARMONIC FORMS.*

By Jozer DoDZIUK.

Table of Contents

Introduction
Whitney Forms
Standard Subdivision of a Complex

Approximation Theorem

AW B o~ O

Inner Product in Cochain Spaces. Combinatorial
and Continuous Hodge Theories

5 Eigenvalues of the Laplacian Acting on Functions

G. Strang informed us that i
the techniques used in this
closely related to finite element method of socllvin octntie] equations

numerically. g partial differential equations

Sandia
National
Laboratories
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CDP1+CDP2=VC

Geometric compatibility Variational compatibility
d d
We——W., W ——W,_, Forms
CDP1 R | I R % | | %
Ck 5 Ck+1 k 6 k+1
- 5 ot C'—C DOFs
COP2 g | | 7 7 L7
d
W, ——d%Wk+1 th Wklil FEMs

(7oR)od=do(7-R) CDP

CDP is equivalent to stability of mixed FEM
CDP and GDP are also equivalent! @ﬁ:&‘iﬂ‘ﬁ‘au

Laboratories
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1/‘} There’s only one low-order
compatible method

Well, up to a choice of an inner product...

And a quadrature rule...
d

W,——W,, And a cell shape...
R\ | R
Co-volume
Ck 5 Ck+1 \
7 {7 —) Mlmetlc —_— /\
d
W éWkH Whitney, 1957 simplex

FEM
Nedelec, 1980-85 cube, prism
l Van Welij, 1985 hexahedron
BD(F)M, 80%-90% many shapes

FEM shapes restricted to

those that have a “reference _
@ Sandia

element’! National
Laboratories
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There are more high-order methods

But they are mostly FEM....Why?

Direct methods:
reliance on the De Rham map limits DOFs to co-chains: stencils expand!

Variational methods:

order = degree of complete polynomials contained in the space (Bramble-Hilbert)

d
Allows to automate formulation of high-order spaces:/ W, éWkH\

- Define reference space containing desired polynomials

- Glue together into piecewise polynomial space 8 C* 0 c |l
- Coordinate interpolation and DOFs to provide CDP
M1d - \ iy
d=dll W, — W,

Demkowicz et. al. TICAM Report (1999), Hiptmair’s talk, PIERS 32 (2001), Arnold & Winther @ Sandia

Numer. Math. (2002), Winther’s talk e e
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Conclusions

Stronger in metric-dependent aspects :

- assessment of the asymptotic behavior (error, stability)

Variational: - formulation of higher-order methods

Weaker in structure-dependent aspects:
- compatibility conditions not constructive, difficult to verify
- FEM restricted to special cell shapes

Weaker in metric-dependent aspects :

- uniform stability of systems, errors, harder to prove

- higher-order methods not easy to define directly

Geometric: _
Stronger in structure-dependent aspects:

- structure of the problem copied automatically
- local/global relationships and invariants preserved
- admit a wider set of cell shapes @ Sandia

National
Laboratories
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Variational + Geometric is better

Conclusions

Enjoy the workshop!

Sandia
National
Laboratories
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Recall the discrete network of pipes...

Another viewpoint

Constitutive  Kinematic and continuity relations
Kinematic Continuity depend only on “network topology”

(incidence matrices!)
» Metric is introduced by
the constitutive equation.
This distinct pattern appears over
and over in physical models
(Tonti, 1974).

It can be used to provide an additional insight |
Into compatible discretizations @ Notons

Laboratories
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Factorization (Tonti) diagrams

De Rham complex

Primal

0 I Hodge * J 0

Dual

Discrete De Rham complex

Primal

T I Hodge *, T 0

Tonti (1974), PIERS 32 (2001), Bossavit IEEE Mag.

(1988), Hiptmair Num. Math. (2001)

“All” 2nd order PDE'’s

Va =-b V-f=-a
a=*.a P=x*0>b

-V-eVa+ua=f

Elimination “All” Methods Primal-dual

»One DDF set used = Two DDF sets used

»One set eliminated »Two d’s are exact
"One d is exact »Two grids (P&D)
*"One d is weak = Typical:
»One grid only Co-Volume
= Typical: Staggered grid
Mixed FEM
Mimetic FD



